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Separation from the leading edge of a delta wing with the subsequent roll-up into 
a vortex has been simulated in numerical solutions to the Euler equations. Such 
simulations raise a number of questions that are still outstanding, including the 
process of inviscid separation from a smooth edge, the role of artificial viscosity in 
the creation and capturing of vortex sheets, the roll-up mechanism and core features, 
losses in total pressure, and the stability of the vortical flow structures to three- 
dimensional disturbances. These matters are discussed in the context of two 
numerical experiments, both carried out in a sequence of three simulations that starts 
with a coarse-mesh discretization and ends with a h e  mesh of over one million cells. 
The first experiment is for transonic flow, M, = 0.7, a = loo, around a pure delta 
wing. The sequence converges to the expected classical steady vortex flow. In  the 
second experiment, transonic flow, M, = 0.9, a = So, past a twisted cranked- 
and-cropped delta wing, the sequence does not converge. Instead the crank is 
observed in the he-mesh solution to set off an instability in the vortex sheet that 
causes the vortex to burst into a thin chaotic vortical layer embedded in laminar 
flow. The mesh sequence suggests that it is the shortest waves resolved that are most 
unstable, but the energy contained in them comes from the large-scale motion and 
seems to be small. 

1. Introduction 
Vortex flows are among the most difficult to analyse because of their inherently 

nonlinear interactions. In order to reach a better understanding one therefore tries 
to study a model problem that contains only one generic aspect of such flows in a 
simple setting, free of other complications. But it is not easy to find a simple 
two-dimensional model problem of vortex flow, preferably with an analytic solution, 
because many of these are often time dependent and even unstable. One inviscid 
model, however, of steady flow past a slender conical delta wing of infinite length 
in which a vortex is shed from the leading edge has been studied numerically and 
has offered insight into the nature of the problem (see the two recent reviews by 
Hoeijmakers 1984 and Smith 1984 and the references therein). The vortex in reality 
is formed by the rolling up of the shed shear layer. In the limit of the vanishing 
viscosity of the theoretical model the shear layer shrinks in thickness to a vortex 
sheet, which coils up into a spiral having an infinite number of turns. Actually a 
vortex core never forms at the centre of this theoretical inviscid spiral, and hence 
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this model is unrealistic in terms of detailed core structure, which is a viscous 
phenomenon. In practical computations, at most only a few turns of the coil are 
accurately resolved before the structure of the spiral is either lost in the dissipation 
inherent in a finite representation, or is replaced by another model for the core, e.g. 
a line vortex. In either case an accurate and detailed representation of the core 
structure is doubtful. But just outside the core the model does represent accurately 
the global quantities like circulation around the core. And the vortex sheet is the 
appropriate model to study the dynamics and stability of the roll-up process, since 
its inflexional velocity profile suggests that an instability would be inviscid in nature. 
Although one might expect a Rayleigh instability, Moore & Griffith-Jones (1974) and 
Moore (1973), making the two-dimensional time-dependent analogy, have analysed 
the problem of the coiling sheet and found it to be marginally stable to two- 
dimensional disturbances, the shortest wavelengths being the least stable?. The 
stretching of the sheet as i t  winds into the spiral is the stabilizing process. In three 
dimensions, only computational models have been formulated to study the 
corresponding problem where the wing is given a trailing edge and so truncated to 
a finite length. If the flow is subsonic, the problem cannot be strictly conical. The 
upwash at  the trailing edge then produces a three-dimensional disturbance that 
makes the flow locally non-conical, but a number of numerical computations 
(Hoeijmakers & Vaatstra 1983; Krause, Shi & Hartwich 1983; Rizzi & Eriksson 
1985; Rizzi 1985a) indicate that the resulting sheet structure still remains stable even 
in very high-resolution simulations that represent the small-scale modes well (Rizzi 
19853). Evidently the disturbance of the trailing edge is not great enough to upset 
stability in these particular cases. Flows such as these, we believe, can be charac- 
terized as being of low helicity and are relatively stable because they are primarily 
two-dimensional in structure. 

The question we wish to raise here is: what happens to stability if the wing 
configuration is fundamentally non-conical and the flow is high speed and com- 
pressible ? A good example of this is a wing with a cranked delta planform, which is 
currently attracting considerable practical interest. In general the flow field can be 
thought of as one with high helicity. At some angle of attack a vortex sheet is shed 
from the leading edge, but the precise dynamics of the sheet are not well understood. 
For example, whether one single contiguous sheet is shed along the entire leading 
edge; or whether two distinct vortices form; and under what conditions the vortical 
features remain stable, are still open questions. We intend, therefore, to explore this 
issue in the thrust of a numerical experiment offering high resolution, with the hope 
of providing a t  least some preliminary insight into the nature of this flow and the 
behaviour of the computational model based on the Euler equations of motion. 

Two flows are studied under the same conditions of the numerical experiment. The 
first is the classical and better understood problem of flow past a pure delta wing that 
is flat and of zero thickness, and serves as the control case. The second geometry is 
a cranked delta with finite thickness and twist. Our intention is to observe the gross 
effects of these two different geometries, with the hope that the contrast in results 

t Whether the vortex sheet is judged either marginally stable or marginally unstable depends 
on the adopted criterion for stability, in particular the norm chosen to measure the growth and 
determine the bound. Our purposes here do not warrant a technical discussion of this issue. A remark 
of Moore & Griffith-Jones (1974) is relevant, however: ‘even in a case where the flow is stable 
according to [Moore’s] criterion, a disturbance of short wavelength can undergo considerable 
amplification even though its amplitude remains bounded as t+ co ’. 
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will shed some light on the dynamics of leading-edge vortices as represented in 
numerical solutions to the Euler equations. 

Designed to gauge the effect of the mesh size, the experiment consists of a series 
of three simulations, for each of the two cases, with progressively finer meshes. As 
the mesh size decreases, the resolution of the results improves, and thus the 
comparison of the three computations enables us to judge the behaviour of the 
large-scale modes separately from that of the small-scale ones. For the pure delta we 
find only small changes in the solution obtained on the fine mesh compared with that 
on the medium mesh. This indicates a convergence with mesh size and a reasonably 
accurate solution. It also suggests that the solution consists almost entirely of 
large-scale modes that are well represented on the medium mesh. This observation 
stands in contrast to the results for the cranked delta. We find here that in the 
coarse-mesh solution, the flow is laminar and contains only stable long modes. Shorter 
modes enter in the medium-mesh results that begin to indicate a wavelike character, 
while the shortest scales on the fine mesh show a very chaotic pattern, superimposed 
upon the coarser laminar field, in a thin layer over the wing outboard of the crank. 
The reason for this, we believe, is the strong spanwise flow set in motion by the lower 
sweep angle outboard which generates substantial shear. This thin layer of high shear 
seems to be unstable so that as the mesh is refined smaller-scale modes continually 
appear. 

A t  this time it is not at all certain that flow instabilities can be studied by numerical 
solutions calculated on a finite grid. Indeed there are still a number of outstanding 
questions about whether the Euler equations are in fact the appropriate model for 
shed-vortex flow, particularly if the shedding edge is round. But our dense-mesh 
solutions do contain some degree of similarity to how we think these flows actually 
behave. In  this regard, our knowledge of these particular cases is somewhat more 
limited because of the difficulty in carrying out physical measurements of transonic 
vortex flow in a wind tunnel. It is in this spirit then that we present our numerical 
observations in order to continue the current debate about Euler computations for 
vortex flow in general, and specifically to bring to light the possibility of vortical 
instabilities brought about by the geometry of the wing form. 

2. Numerical solution procedure 
Rizzi & Eriksson (1984) describe the numerical method that we use to solve the 

Euler equations. In this finite-volume procedure the Euler equations for compressible 
flow are expressed as the integral balance of the conservation laws 

where q is the vector with elements of mass and momentum. Since the total enthalpy 
h, in the steady flows under consideration here is constant, the energy equation is 
not needed in the system. The inviscid flux quantity H(q)*n represents the net flux 
of q transported across, plus the pressure p acting on, the surface S surrounding the 
volume of fluid. The method adds another term Y to (l), an artificial viscosity model 
of the form 

Y(4) = x l + , s 1 ( 1 ) ) + ~ + + 5 s 5 ( 1 ) 3 ) ~ 5 + + K ~ K ( 1 ) ) + K I 4 - ~ ( ~ + ~ + + ) 4 .  

It has the property of an energy sink for the shortest modes, i.e. (dldt) qz < 0 summed 
over all the cells including those at  the boundaries. It makes the method dissipative. 
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The finite-volume scheme then discretizes (1) by assuming that q is a cell-averaged 
quantity located in the centre of the cell, and the flux term H(q)*n is defined only 
at  the cell faces by averaging the values on each side. With these definitions, and 
calling the cell surfaces in the three coordinate directions of the mesh S,, S,, and 
SK, we obtain the finite-volume form for cell ijk, 

where 6,(WSZ) x (H. SZ)#++- (W.S,),4 is the centred-difference operator. A more 
detailed description of the method is given in Rizzi & Eriksson (1984). With the 
appropriate boundary conditions, and representing all spatial differences by FD, we 
integrate this last equation with the two-level three-stage scheme 

40:= P, 
q / : =  qO+AtFD(qo), 

Q" : = 40 +AtCW(qo)  + iFD(q')l, 

qA+':= qO+At[iFD(qo)++FD(q")], 

that steps the solution forward in time. Because a local time-step At is used, true time 
accuracy is not obtained in the global sense?. But when a steady state exists, the 
procedure reaches it, and when one does not exist, the pseudo-time iterations do not 
converge. The method has been under development for more than ten years (see e.g. 
Rizzi & Bailey 1976; Rizzi 1982). It is well-tested, and in an extensive series of 
comparisons with other methods it has proven to be accurate and reliable (Smith 
1985). 

3. Features of computed Euler solutions 
Some features commonly observed in numerical solutions to the Euler equations 

are currently under debate. Foremost among them, perhaps, is the creation of 
vorticity in the absence of a Kutta condition. Rizzi & Eriksson (1984) discussed this 
issue in regard to their solution for transonic flow past a quadrilateral wing with low 
sweep angle. Without invoking a Kutta condition, that solution displayed a vortex 
sheet being shed from the trailing edge of the wing, which is sharp. No rigorous proof 
exists, but it is generally thought that a vortex sheet being created at a discontinuous 
edge is a bona fide solution to the Euler equations. Hirschel & Fornasier (1984) argued 
that in a potential flow past such a wing, the upper- and lower-surface velocities are 
in substantial shear relative to each other over much of the chord. The shear 
disappears only just at the trailing edge, and if that edge is sharp, the numerical 
solutions to the Euler equations do not seem to obtain this shear cancellation. A 
vortex sheet forms instead. In  the solution of Rizzi & Eriksson (1984), however, a 
vortex was also found at the rounded tip of the wing. It is currently believed that 
artificial viscosity is responsible for the formation of a vortex due to the shedding 
of a vortex sheet from a smooth edge. 

Apart from the question of the creation of vorticity, a further issue is whether it 
is at all feasible to expect some degree of accuracy in the vortical structures of a 
mesh-based numerical solution. A close look at two alternative computational models 

7 Because the local time-step varies directly with the size of the individual cell, one can argue 
that in a smooth mesh the calculation is time-accurate locally. 
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FIQURE 1.  A vortex sheet has a discontinuity in velocity vector. Any numerical solution 
that supports the jump in the transverse component may show either a loss or gain in total 
pressure. 

for inviscid incompressible vortex flow provides some insight. Hoeijmakers 6 
Vaatstra (1983) have devised a method based upon a panel technique that inserts 
a vortex sheet into the solution as a discontinuity and adjusts it to be force-free in 
the surrounding potential field, usually termed vortex-sheet tracking. The strong 
point of this approach is the complete absence of diffusion of the sheet, while its 
limitation is that the overall starting location and topology of the sheet must be 
specified beforehand. An alternative is to solve the incompressible Euler equations 
numerically on a grid. The vortex sheet, smeared out over a number of mesh cells, 
is then obtained automatically as part of the numerical solution, usually termed 
vortex-sheet capturing (Rizzi & Eriksson 1985). Its weakness is that all the flow 
features must be supported by the mesh, and this implies a certain amount of 
dissipation that varies with the spacing of the mesh. Thus a vortex sheet diffuses over 
a number of cells. On the other hand, the strong point of this approach is that no 
information about the topology of the sheet needs to be specified prior to the solution. 
The smeared sheet can meander exactly as it  likes, provided there are sufficient grid 
points to inhibit its diffusion and fo maintain its general structure. A recent 
comparison of results from these two methods for incompressible flow past a conical 
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delta wing of finite length shows remarkable agreement in the position and strength 
of the vortical features (Hoeijmakers & Rizzi 1984). It demonstrates that even with 
a mesh of less than 80000 cells the diffusion has not brought about any substantial 
deterioration in the overall accuracy of the results compared to the diffusion-free 
solution. This finding strengthens our overall confidence in representing vortical-flow 
features upon a mesh. 

The comparison of the results from the two methods brought out one striking 
fact - substantial losses in total pressure are encountered in the Euler solution, 
whereas total pressure is constant in the potential solution. Despite the losses, the 
two results agree rather well on the surface of the wing. Originally it was thought 
that the losses are strictly a function of the artificial viscosity in the solution, but 
Powell et al. (1985) have pointed out that it is, rather, a consequence of capturing 
the vortex sheet. The velocity across the sheet is sheared. In  a coordinate system 
aligned with the bisector of the two velocities at  the edges of the sheet, the bisector 
or axial component v, is constant across the sheet, but the transverse component 
jumps from positive to negative vt (figure 1). Somewhere within the sheet this 
component passes through zero and there the total pressure in isoenergetic com- 
pressible flow, 

reaches a minimum because h, is a global constant and the static pressurep is constant 
across the sheet. Hence the loss in total pressure follows from the widening of the 
sheet, a consequence of the capturing of the weak solution which must be supported 
over several mesh cells. Because the axial component v, is continuous across the sheet, 
we assume that the numerical method represents it accurately. But the method is 
likely to produce over- and undershoots in the approximation of the jump in vt 
that result directly in gain or loss of total pressure. In a sense one can say that 
total-pressure loss is an effect of artificial viscosity, which is what gives the smooth 
profile across the sheet, but it is important to realize that the artificial viscosity does 
not determine the magnitude of the loss. The magnitude is set by the value of IvJ, 
which is determined by the overall velocity field as it approaches the shedding edge. 
The structure within the captured sheet is, of course, not physical, being a direct 
consequence of the artificial viscosity model. 

4. Mesh convergence and unstable modes 
The flow model defined by (1) and (2) that we are using is second-order accurate, 

and strongly dissipates phenomena whose wavelength is of the order of the mesh 
spacing. One of the best means to judge the accuracy of a given numerical solution 
is to repeat the calculation with the mesh refined by halving the spacing in each of 
the spatial dimensions. The truncation error of the discrete scheme falls off quad- 
ratically, and the strength of the artificial viscosity in the regions of smooth flow is 
diminished even more rapidly, by   AX)^. Across discontinuities and sharp gradients 
of the flow the artificial viscosity is only linear in Ax, however, owing to the 
nonlinearly switched second-difference term of the model. One tries to compute a 
sequence of calculations with meshes progressively refined in this manner. When the 
sequence of solutions converges, one is confident that the truncation error and 
artificial viscosity have been reduced to an insignificant level, and that the solution 
is an accurate one. 

If the true solution is laminar and contains only modes that are large in scale with 
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respect to the mesh size, then we can expect the sequence of refined-mesh 
approximations to converge to it. But if small-scale modes are excited, for example 
by a flow instability, the sequence will not converge. Reducing the mesh size increases 
the number of unknowns and increases the degrees of freedom of the solution. The 
smaller we make the mesh spacing by adding more grid points, the finer the 
scale-length of the phenomena that we can resolve without them being obliterated 
by the dissipation. In this way the numerical method acts as a low-pass filter on the 
features we observe, where the cutoff wavelength is set by the fineness of the mesh. 
This fact can be used to detect the presence of unstable modes. The usual mesh 
dimensions, giving say about 80000 cells, can support only the large-scale features, 
which we presume are stable. When we use a much finer mesh, smaller-scale features, 
if they are generated, are then represented in the numerical solution. The stability 
analysis by Moore t Griffith-Jones (1974) and Moore (1973) suggests that short-wave 
modes are the most unstable in the flows that we are discussing. By comparing the 
solution obtained with the usual mesh to the one obtained with the finer mesh and 
observing the differences between them, one can detect the presence of fine-scale 
structure and its influence on the overall flow. We hypothesize that, given a sufficient 
number of grid points to resolve the shed shear layer and limit its diffusion, the 
numerical solution of the Euler equations does provide useful information about the 
dynamics of the free shear layer around delta wings. In particular if the resolution 
is sharp enough, one may determine whether the vortical structures in the flow are 
unstable. 

If this line of attack on the problem is to succeed, we must be able to refine the 
mesh sufficiently that the resolved spectrum reaches far enough into the small scales 
to capture the suspected unstable modes. If it  does not, we shall never see the 
instability. The recent construction of supercomputers with many millions of words 
of real memory now allows the use of more dense meshes than was possible before. 
Of course there will always be those modes that are smaller than the resolution of 
our mesh, no matter how big our computer is, and we can say nothing about these 
modes. All we can do is construct several meshes of varying mesh fineness, and then 
compare the solutions computed upon them in order to establish the trend as the 
resolution increases. 

5. The aim of the numerical experiment 
We intend to test our hypothesis and search for unstable modes in the vortex 

dynamics around delta wings. The numerical experiment comprises two different 
vortex flows at transonic speed. The first case, a flat thin wing of pure delta form 
at a 10' angle of attack, is the classical sharp-leading-edge-vortex problem. The flow 
is very nearly conical and is subjected to a minimum of three-dimensional 
disturbances. In  sharp contrast tp this, the second wing form is chosen to be a twisted 
cranked delta wing with a cropped tip and a smooth leading edge, also at  transonic 
speed and an 8 O  angle of attack. Owing to this geometry the flow is very non-conical 
and the vortex structures are expected to be highly three-dimensional. Progressively 
refined mesh solutions are carried out for both cases, with the intention of contrasting 
one case against the other in order to highlight the similarities ds well aa the 
difFerences. The discussion focuses on the controversial issues surrounding numerical 
Euler solutions : the creation of vorticity, the diffusion of vortical features upon the 
mesh, the loss of total pressure, and the stability of the vortex dynamics. We shall 
draw some conclusions about these issues from the two flows by looking at the 
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computed isobars, contours of total pressure, magnitude of vorticity, and some 
integrated particle paths. 

The two cases are at transonic speed where there is a paucity of measured data 
because flow visualization is difficult to carry out in this regime in a wind tunnel. 
In a sense, then, the computations are exploratory in nature, with the aim of reaching 
at least a preliminary understanding of the dynamics of the vortex features that are 
involved. By these simulations, using even the highest numerical resolution possible, 
we cannot, however, hope to answer all the outstanding questions surrounding these 
issues. Our goal is more in the spirit of tracing a broad outline of the phenomena 
involved, along with offering some elementary explanations for their presence, as a 
means to establish a suitable phenomenological model. This may help to guide the 
way to a better understanding of the issues and a more fruitful analysis in the future. 

6. Computed results for the pure delta wing 
Transonic flow, M ,  = 0.7, is the first case, computed around a flat 70' swept delta 

wing of zero thickness and incidence 01 = 10'. The leading edge is sharp and the wing 
is pure in the sense that it is entirely conical, with the tip not cropped. It is the wing 
on which Hoeijmakers & Rizzi (1984) carried out their comparison for incompressible 
flow, and further results were discussed by Rizzi & Eriksson (1985). It is also the wing 
for which Murman, Rizzi & Powell (1985) obtained very good agreement at supersonic 
speeds between two-dimensional conical and fully three-dimensional computations, 
both using very high-resolution meshes. 

Here at  transonic speed we use the same 0 4  mesh topology as those two previous 
investigations. Figure 2 presents chord and span sections, as well as a three- 
dimensional projection of the mesh. The mesh is drawn for dimensions 80 x 24 x 40 
cells, but we calculate here with 192 x 56 x 96 for just over one million cells. The outer 
extremity of the mesh is a hemisphere (assuming centreline symmetry) with a radius 
of about 3 root chords c, of the wing. The computation begins with the free-stream 
values as initial conditions on the so-called coarse grid of dimensions 48 x 14 x 24 
obtained by using only every fourth point in the original mesh. One thousand 
iterations are carried out, the results are interpolated to the medium mesh 
96 x 28 x 48 where another 1000 iterations are performed, and this successive global 
mesh refinement is repeated once again to reach the fine mesh of 192 x 56 x 96 cells. 
Figure 3 presents the evolution of the lift coefficient C,  and the decay in the density 
residual, the L, norm of the change in density from one iteration to the next. We 
see that the decay rate d is greatest in the coarse mesh and least in the fine, reflecting 
its character, d w 1 -O(Ax). As the mesh grows finer, transient waves require more 
time iterations to pass through a given region of space. Still, one can see that a steady 
state is reached after 1000 iterations on the fine mesh. The residual is reduced by three 
orders of magnitude and the lift is steady a t  C,  = 0.448. 

Next we examine the flow field for its content and quality of vortical features, and 
we also want to determine if the fine solution is converged in the sense of mesh spacing. 
Side-by-side surveys of the medium-mesh and fine-mesh flow fields are suitable for 
this purpose. Figure 4 shows the fluid-particle paths that are integrated from the 
steady velocity field by selecting a number of positions distributed along a line near 
the leading edge as seed points and then tracing their path downstream. Alterna- 
tively, a line 2 = constant along the span can also be chosen. In either case the 
differences between the medium and fine streamlines are very small. In  both flow 
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Detail at leading edge 

FIGURE 2. Grid generated around a slender delta-shaped wing has an 0-0 topology that 
concentrates points around the edges. 



172 A .  Rizzi and C. J .  Purcell 

CL 

0.2 - 

0 

, 

-P 

I I I 

., 
1000 2000 

Interations 
3000 

FIGURE 3. Evolution of lift coefficient C,  and decay of L, residual over three-grid sequence 
of solutions: pure delta, M, = 0.7, a = 10". 

FIGURE 4. Comparison of integrated particle paths from medium- and fine-mesh solutions. 

fields, separation begins at the apex and continues all along the leading edge, and 
a vortex evolves. 

There is no doubt that the numerical method is selecting the solution with the 
shed vortex sheet. It would be futile to think that one could obtain the attached 
potential solution for this case because that would require the cancellation of the 
shear between the upper and lower surface all along the geometrical singular line of 
the leading edge. The method prefers instead to allow the shear to separate there in 
a vortex sheet, which is an allowable solution of the difference equations. The sharp 
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FIGURE 5(a ,  b ) .  For caption see p. 175. 
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Axial view of core GI,-- . 

i/ 
FIGURE 5(c).  For caption see facing page. 

leading edge in this case plays the corresponding role to the trailing edge of the 
high-aspect-ratio wing in Rizzi & Eriksson (1984). 

The flow fields of the medium and fine solutions are very nearly conical and the 
vortex cores lie practically in a straight line, except beyond the trailing edge where 
the vortex is turned inboard and upward in order to return to the free-stream 
direction further back. It is the increasing pressure gradient, from a low value in the 
vortex core over the wing to the higher free-stream value beyond the trailing edge, 
that brings about this effect. At  higher angle of attack this three-dimensional 
disturbance can be sufficiently large to produce a spiralling of the core and, 
eventually, vortex breakdown (Hall 1972; Leibovich 1978). 

The isocontours of the medium and fine solutions in figure 5 confirm the conclusion 
that the flow is smooth and nearly conical and that the differences between the two 
of them are only small. The isobars (lines of constant ratio of local static to free-stream 
total pressure, 1 -p /p , , )  in figure 5 (a) indicate a low-pressure region in the core that 
changes little from the medium to the fine solution. The detail in the wake structure 
is sharper in the fine solution, and the axial view of the core might suggest that the 
fine core lies a little closer to the wing than the medium core. The feature just past 
the trailing edge in this view is a function of the curved mesh surface, in which the 
contours are drawn, cutting across the vortex. It should not be mistaken for a 
spiralling motion. The survey of vorticity magnitude If21 in figure 5 ( b )  reveals a 
sharper resolution of the vortex sheet separating from the leading edge, and the 
interaction of the leading-edge and trailing-edge vortices in the wake. Aside from the 
crisper resolution of the sheet, the agreement in the overall features here implies that 
the vortex dynamics can be represented in numerical solutions upon a mesh to a good 
degree of accuracy. Both solutions indicate that the vorticity in the sheet falls off 
rapidly over a short distance from the leading edge. This would suggest that even 



Computation of transonic leading-edge vortices using the Euler equations 175 

= 0.05 

= 0.05 

--- -"""A 
x/c*=o.9 ! 

MCdiUIll Fine 

FIGURE 5. Isograms comparing the medium-(96 x 28 x 48) mesh and fine-( 192 x 66 x 96) mesh 
solutions drawn in a number of mesh surfaces around the pure delta wing: = 0.7, a = loo, 
increment = 0.06. (a) Pressure l-p/pta; (a) vorticity magnitude Inl; (c) total pressure loss 
1 -pt/ptt, ; (d )  upper-surface contours. 

before completing the first turn of its spiral the strength of the sheet is rather small. 
It might not be very important, therefore, to resolve the coils of the spiral distinctly. 
The concentric rings of increasing vorticity magnitude indicate the vortex core, where 
swirl velocity is diminished and converted into axial velocity. One can see this effect 
in the pathlines in figure 4. This is a dissipative process, as evidenced by the loss in 
total pressure (figure 5 c ) ,  and presumably the result of either truncation error or 
numerical viscosity, or both. It is dependent on mesh size; the core shrinks as the 
mesh is refined, but it produces the realistic effect of zero swirl a t  the centre of the 
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core. Apparently the location of the core centre does not change significantly with 
mesh size (see also figure 4). The largest differences between the medium and fine 
solutions are seen in the contours of total pressure loss (1 -pt /ptm) in figure 5 (c). The 
differences appear not in the level of the loss, which is about the same (20 %) in the 
two solutions, but in the location. In the fine-mesh solution the corresponding 
contourswe wound tighter in the vortex core. This observation is consistent with 
our discussion about the vorticity contours, and with the explanation of total- 
pressure loss given by Powell et al. (1985). The maximum loss is set by the shear at  the 
leading edge, which seems to be reasonably well resolved in both the medium and the 
fine solutions. This shear determines the swirl that is swept up into the core. How it 
then diffuses in the core is a function of the mesh size there. One can surmise that on 
the fine mesh more of the sheet is distinctly resolved as it spirals up, and the core, 
where the swirl velocity goes to zero, is correspondingly smaller. Even in the fine 
mesh, however, it  seems doubtful that more than one turn of the spiral is represented 
distinctly. Mesh-computed solutions must produce diffuse vortex cores within which 
the details have to be looked upon as somewhat artificial. Qualitatively, however, 
the concentric rings of total pressure in figure 5 ( c )  are similar to those measured in 
experiments. Furthermore, we presume that the fine details of the core do not 
substantially alter the broad dynamics of the vortex structures. 

The differences in the two solutions on the upper surface of the wing (figure 5d) 
are also small. The lowest-pressure contour in the medium solution falls off before 
the 90% span station. The low-pressure trough also is somewhat broader, but i t  is 
centred on the one in the fine solution. Also total-pressure loss has diffused onto the 
upper surface less in the fine solution than in the medium one. These are precisely 
the effects of mesh refinement reported by Rizzi (1987a, 1985~)  for this wing in 
incompressible flow and for the Dillner wing in transonic flow, respectively. 

In  summary we conclude that for this case of low helicity (defined as the angle 
between the local velocity and vorticity vectors) and sqall three-dimensional 
departure from conical flow we have very nearly reached mesh convergence with our 
numerical solutions. The vortex flow here is laminar, and composed only of large-scale 
modes. 

7. Vortex-sheet dynamics under large disturbance 
The vortex core of the previous case is nearly straight. Betchov’s (1965) analysis 

of an incompressible vortex filament shows that if it is forced to bend it begins to 
spiral, and its dynamics may become chaotic. The motivation of our next case is 
to observe the dynamics produced in a mesh-based solution of the Euler equations 
when the basic vortex structures are curved. In addition to being of practical interest, 
a cranked delta wing is a geometry suitable for producing this effect because it is 
non-conical. Our goal is to carry out an exploratory set of progressively refined 
computations for the flow field around such a cranked delta, in order to observe the 
vortex dynamics predicted by the mesh-based Euler solution and to make further 
remarks about the plausibility of the numerical model for the case when the vortex 
undergoes a large disturbance. 

Since cranked delta wings have been studied mostly at  low speeds, our discussion 
of the likely dynamics should begin for the case of incompressible flow (Thompson 
1985). A t  some angle of attack a vortex sheet is shed from the leading edge. Figure 
6 outlines three possible scenarios for the dynamics of that sheet. The wing is sketched 
with a side edge at the tip, which gives rise to a tip vortex, but our discussion is 
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FIGURE 6. Three scenarios for the dynamics of the shed sheet: (a) intact sheet with double-branched 
spiral, (b) sheet tears but is stable, (c) sheet tears and is unstable. 

concerned mainly with what happens at the crank in the leading edge. The model 
Hoeijmakers, Vaatstra & Verhaagen (1983) use to study this configuration assumes 
that at  the crank the sheet remains intact but the change in sweep angle sets up a 
disturbance that causes the sheet to coil up into a double-branched spiral (figure 6a) .  
In the scenario of Brennenstuhl & Hummel (1982), based on wind-tunnel observa- 
tions, the sheet tears at  the crank (figure 6 b )  and leaves a section inboard whose two 
free edges spiral up to form an inboard vortex which is not fed beyond the crank. 
The section outboard, if a sheet is shed at all, also rolls up into the outboard vortex. 
In both scenarios two distinct vortices of like sign are created and rotate about one 
another. The flow structure of these models is taken to be stable and composed only 
of large-scale motions. As the angle of attack increases, the corotating vortices have 
been observed to merge before reaching the trailing edge (Thompson 1985). At still 
higher angles of attack the occurrence of vortex breakdown has been reported 
(Brennenstuhl & Humrpel 1982). This then leads to the third scenario (figure 6c)  
which suggests that the tearing process may bring about an instability in the sheet, 
which may well be a precursor to complete breakdown. Two vortices still form here, 
but the sheet shreds at the crank and, together with the two cores, they all 
disintegrate into a less-ordered, but standing-wave, pattern of vortical structures. 
Helicity in this case would be high because the vorticity and velocity fields are 
disordered and are no longer closely aligned. The details of this scenario are still 
matters of conjecture, for there is not yet any clear-cut experimental evidence to 
provide more certainty. 

8. Computed results for the cranked delta 
The delta wing selected for the experiment has a forward leading edge sweep of 

57' which is then 'cranked' to  45' somewhere past 60% span. It is made up of a 
symmetric 4% thick profile that is constant over the span. The leading edge is 
smooth. Twisting the wing up at the root and down at the tip (figure 7) does not allow 
the flow to be conical and enhances the spatial dimensionality of the vortex dynamics. 

Since the wing i s  given a side edge, the 0-0 type mesh topology of Eriksson (1982) 
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- 20 
FIGURE 7. Cranked delta wing of constant symmetric profile and twist. 

FIGURE 8. 0-0 type mesh with 192 x 56 x 96 cells around cranked delta wing. 

designed for trapezoidal planforms is suitable here. We have used this type of mesh 
before for a similar cranked delta wing (except that it is cambered) for cases at  low 
angle of attack, when the flow remains attached around the leading edge. The 
computed Euler solutions agree very well with the results of a panel method, as well 
as with experimental measurements (Fornasier & Rizzi 1985). Comparisons like these 
give us confidence that the mesh is basically sound - its outer extremity is sufficiently 
far, and it is sufficiently smooth around the crank. A t  higher angles of attack, when 
the flow does separate at the leading edge and the panel method no longer applies, 
the overall lift and drag coefficients of the computed Euler solutions also agree well 
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FIGURE 9. Evolution of lift coefficient C, and decay of L, residual over three-grid sequence of 
solutions: cranked delta, M = 0.9, a = 8". 

Interations 

with the measured values, but the comparison of surface pressures begin to show some 
discrepancies (Fornasier & Rizzi 1985; Rizzi & Purcell 1986a, b). An investigation 
with one level of mesh refinement failed to show mesh convergence. Instead, the 
refined-mesh solution with about 600000 cells indicates the presence of small-scale 
modes and the onset of non-smooth flow. 

Here we want to further examine this observation under more carefully controlled 
conditions. The wing now is uncambered (figure 7), and the mesh-refinement sequence 
consists of three solutions with the last involving just over one million cells, the finest 
mesh that we can work with at this time. The flow conditions now are M ,  = 0.9 
a = 8' past the cranked-and-cropped delta wing with twist (figure 7). In  the 
experiment we carry out the test for mesh convergence with three separate simula- 
tions, identical in every way except for the size of the grid, in order to compare the 
character of the flow represented on each of these grids and to judge if the sequence 
converges as i t  did for the pure delta wing. The fine mesh, identical in size with the 
one for the pure delta, has 192 cells around the chord of the wing, 96 cells across the 
span, and 56 from the wing surface outward to the far-field boundary, which is about 
3 root chords away. Figure 8 presents the mesh in planform, chordwise, and spanwise 
sections. The medium mesh is produced from the fine one by eliminating every other 
cell wall in each direction, giving 9 6 x 2 8 ~ 4 8  cells. For the coarse mesh every 
third cell wall in the fine mesh is retained, the two intervening ones are removed, and 
this leaves 64 x 20 x 32 cells. Only the size of the cells differs in the three meshes; the 
outer boundaries are at the same location, and the relative distributions of cells are 
all identical. 

Figure 9 reveals the evolution of lift and the decay of the L, norm of the density 
change over the course of the three-level mesh refinement. In  the coarse mesh the 
residual is substantially reduced and a steady state is reached after 1000 iterations. 
The residual decay is much weaker in the medium mesh, and considerably less than 
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FIGURE 10. Integrated particle paths and (v, w)-velocity vectors from coarse solution, 64 x 20 x 32 
cells. (a) Particle seeding, x = constant; ( b )  particle seeding along leading edge. 

the medium-mesh evolution of the pure-delta case in figure 3. After a feeble initial 
diminishment following the interpolation from the medium result, the decay rate is 
virtually zero in the fine mesh even after 2000 iterations. This stands in marked 
contrast to the pure-delta case in figure 3, where a steady state was reached in lo00 
iterations. Although most people would label this evolution as lacking convergence 
to the steady state, we prefer to call the solution after 2000 iterations in the !he mesh 
' quasi-steady '. There are no growing components in the solution, the residual is more 
than two orders of magnitude below what it started out as in the coarse mesh, and 
the lift coefficient C ,  shows only small-amplitude oscillations about a mean value. We 
believe, and we present observations to substantiate this point below, that this flow 
field is quasi-steady, not because of a malfunction of the numerical method, but owing 
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to the appearance of small-scale unstable modes of low energy content that on average 
do not alter the large-scale features of the flow. This matter of unstable modes in a 
numerical solution is a controversial one and needs much more clarification. To begin, 
we present our side of the debate. 

8.1. Coarse-mesh solution 
Since the coarse solution does reach a steady state, let us examine this flow field first. 
Figure 10 represents the streamlines integrated from this solution together with 
(v ,  w)-velocity component vectors drawn in the spanwise planes x/c, = 0.5, 0.7 and 
0.9, in order to observe better the details in the motion ahead of the crank, after the 
crank but ahead of the tip, and beyond the leading edge of the tip. These velocity 
vectors lie in a true plane, not a mesh surface, and they have been interpolated from 
the solution and equispaced in the plane so that the velocity in each of the mesh 
solutions may be compared at the identical location in space. 

Figure 10(a) immediately demonstrates that a vortex does develop over the wing. 
Because of the smooth leading edge it starts not at the apex but about 20% c, 
downstream, where the streamlines show a very strong shearing. Twelve seed points 
are used, six very close to the upper surface and the other six just slightly above them. 
The integrated paths reveal that while some of these particles remain attached all 
the way to the trailing edge, others very nearby are swept outboard to the leading 
edge, separate, and roll-up into a single vortex. The velocity vectors confirm this 
pattern. It seems that in this coarse solution the shed vortex sheet remains 
contiguous. The vortex core does not follow the leading edge after the crank ; instead 
it remains in a straight line but the sheet continues to be shed from the cranked 
leading edge. The crank produces a strong spanwise flow over the surface of the wing 
which then runs into the sheet from the tip and separates upward. The dramatic effect 
of the crank and tip, seen in the side view, figure 10 (b), causes the vortex to lift upward 
away from the wing in the direction of the free stream. In the pure-delta case this 
phenomenon occurs only past the trailing edge. It is an indication that the 
cranked-delta flow field is highly non-conical. 

The structures in the flow field are surveyed by contour plots of the flow properties 
in the three spanwise (true) planes, x/c ,  = 0.5, 0.7, 0.9, and the upper wing surface. 
The plots are (a) static pressure (either 1 -p /p tm,  normalized by the free stream total 
pressure, or the pressure coefficient ( p - p , ) / f p ,  v",) to identify shock waves and 
expansion regions; (b) vorticity magnitude If21 to bring out the vortical structures; 
and (c) total pressure coefficient (1 -pt/ptm) to show the shear layers and the shocks. 
By comparing these three sets of contours, one can differentiate the shear layers 
from the shocks. The contours in figure 11 confirm the picture given by the streamlines 
in figure 10. The pressure (figure 11 a) on the upper surface has a ridge-like pattern, 
the typical footprint of the vortex. The isobars remain smooth and intact and follow 
the leading edge by bending slightly around the crank. This leads us to think that 
only one vortex core forms and that the shear layer is probably contiguous in this 
solution. It appears, however, that the crank in the leading edge intensifies and 
focuses the vorticity because the vorticity contours are stretched out by the 
protruding leading edge at the 70 % plane (figure 11 b). The vorticity contours in all 
three planes verify that a high-intensity vortical layer is shed from the leading edge, 
and the concentric pattern reaffirms a single-core vortex. The total-pressure contours 
(figure 11 c) follow the pattern of vorticity as they should, and indicate a loss of 50 yo 
in the core. The contours in the 90 yo plane imply a welling up of the vortical layer 
near the leading edge. To judge by the ridge of the pressure trough and the build-up 
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FIGURE 11 (u,  b ) .  For caption see facing page. 
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FIGURE 11. Isograms of the solution computed around the cranked delta using the coarse 
64 x 20 x 32 mesh, M = 0.9, a = 8". (a) C isobars (increment = 0.1); (b) vorticity magnitude 
(increment 0.005) ; ( c )  total pressure, 1 -ptrptm (increment 0.05). 

of vorticity along the leading edge, the vortex begins on the leading edge at about 
z/c, = 0.2. Inboard of the vortical region the flow is attached (figure LO) and a gradual 
recompression takes place just ahead of the trailing edge (figure lla). Figure 11 
overall confirms the laminar quality of the shear layer shed from the leading edge and 
outlines the diffuse features that we might expect from this coarse-grid solution. One 
sees that it contains only long-wave components. The behaviour of the sheet, if it  
can be distinguished at all, seems closest to scenario 1 (see figure 6), although there 
is no evidence of a double-branched roll-up at the crank. 

8.2. Medium-mesh solution 
We now want to learn if the sequence of solutions under mesh refinement converges 
to a laminar result, as it did for the pure-delta case. When the mesh is refined it times 
in each of the three directions to the medium mesh of dimensions 96 x 28 x 48, the 
streamlines that result are shown in figure 12. The vortex starts at about the same 
location on the leading edge as in the coarse solution, but now inboard of the crank 
the core is less diffuse and more tightly wound (figure 12a). A t  the crank an abrupt 
transition takes place and the pathlines in the vortical layer downstream become 
disordered. The layer wells up into a bulge ahead of the trailing edge (figure 12b), 
certainly with high helicity content. After losing 50 % of its total pressure, the flow 
has to slow down substantially to meet the rising pressure gradient. As discussed by 
Murman & Rizzi (1986) the loss of total pressure may be a significant event in the 
breakdown process. 
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FIGURE 12. Integrated particle paths and (v, w)-velocity vectors from medium solution, 94 x 28 x 48 

cells. (a) Particle seeding near vortex start; (b)  particle seeding inboard from leading edge. 

Compared to the coarse solution, the elongated ridge-like contours of low pressure 
along the leading edge do not bend smoothly and continuously around the crank 
(figure 13a). Instead the innermost ones are terminated, and the others sprawl over 
the outer wing surface in a wavy manner. Outboard of the crank other contours begin 
to build up again at the leading edge, but without the usual ridge-like pattern. It 
seems that in these results the shear layer from inboard undergoes a disturbance at 
the crank, which partially depletes its well-organized structure, and that although 
weaker, this shear layer continues to be shed along the leading edge past the crank 
but does not roll-up in the usual spiral to form an outboard vortex. The vorticity 
contours (figure 138) provide some clues for the interpretation. The build-up of 
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FIQURE 13(a, b) .  For caption see next page. 
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FIQURE 13. Isograms of the solution computed around the cranked delta using the medium 
96 x 28 x 48 mesh, M = 0.9, a = 8". (a) C isobars (increment = 0.1); (b )  vorticity magnitude 
(increment 0.005); (c) total pressure, 1 -ptfpt ,  (increment 0.05). 

vorticity at about x/c, = 0.2 on the leading edge signals the start of the inboard 
vortex, and its single core is evident in the 50 % plane (figure 13b). After the crank 
the pattern changes to that of two extrema of vorticity in the 70 % plane. This suggests 
that the crank may be setting off the double-branched spiral of scenario 2 (see figure 
6), which then evolves into two distinct vortices. It appears, however, that these two 
vortices do not remain distinct further downstream. Instead they seem to interact 
and shred one another, because at the 90% plane there are a number of islands of 
vorticity of complex structure. The contours also indicate the welling up of the 
vortical layer, coinciding with the thickening of the region of tangled pathlines that 
we saw in figure 12. The total-pressure contours (figure 13c) clearly delineate this 
region of 50% loss. 

Compared to the coarse solution, the feabures of the flow here are less diffuse, but 
they no longer have a laminar character in a small vortical layer over the wing. It 
is important, however, to point out that outside this layer the flow is smooth and 
rather similar to that found in the coarse solution, as can be ascertained by comparing 
the velocity vectors in figures 10 and 12. 

8.3. Fine-rnesh results 
The final step in our mesh refinement is to halve the cell size in each of the three 
directions to give the overall dimensions 192 x 56 x 96 for just over one million cells. 
The computations were continued for 2000 time-steps, and all of the data resided in 
the real memory of the 16 M word CYBER 205 supercomputer. The computational 
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FIGURE 15(a, b ) .  For caption see facing page. 
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FIQURE 15. Isograms of the solution computed around the cranked delta using the fine 192 x 56 x 96 
mesh, M = 0.9, a = 8". (a) C p  isobars (increment = 0.1) ; (6) vorticity magnitude (increment 0.005); 
(c) total pressure, 1 -pt/pt, (increment 0.05). 

task, which totalled about 2 x 10l2 arithmetic operations, lasted over 4 CPU hours. 
The integrated particle pathst are drawn in figure 14. The inboard vortex appears 
to form at the same location on the leading edge as in the medium solution, but now 
we see a very dramatic bursting of this coherent vortex at the crank and a shredding 
into a number of strands (figure 14a). The vortical layer lifts upward from the wing 
as before (figure 14b). To demonstrate that this unstable layer is small in extent and 
sharply delineated from the surrounding laminar flow, we seed our particle paths just 
a little closer to the leading edge in fig. 14c and obtain relatively smooth streamlines. 

The pressure contours (figure 15a) also attest to the overall wavy nature of the 
flow in the layer. Compared to the medium results, the cellular structure of the flow 
on the upper surface is now much more dominant and indicates that as smaller and 
smaller wavelengths are resolved they grow more and more unstable. The vorticity 
contours (figure 15b) show, however, that the starting position of the vortex, as well 
as the overall pattern of low pressure inboard of the crank, do not change very much 
from the medium to the fine solution. What has become clearer in the fine solution 
is the demarcation line which runs downstream from the vortex starting position and 
separates the inboard region of laminar flow from the outboard region of disordered 
motion. The line seems to be the reattachment line of the free shear layer shed from the 
leading edge since all the flow properties except pressure show a substantial gradient 

t Due to the quaai-steady nature of the solution, the streamlines are not strictly steady. It is 
very likely that they do flap about in the non-smooth region of the vortical layer. The particle paths 
therefore should be viewed aa an instantaneous snapshot of the motion. 

7-2 
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FIGURE 16. Isobars in the plane y l b  = 0.2, fine-mesh solution. 

across it. In  the laminar region inboard of this line near the wing root, the 
recompression found in the coarse solution just ahead of the trailing edge now appears 
crisply as a weak shock wave with hardly any change in total pressure across it. A 
stronger shock forms along the leading edge and does produce a substantial loss in 
total pressure. Figure 16 illustrates this with isobars in the chordwise plane y/b = 0.2 
along with a plot of the surface C p  values. 

These fine-mesh results (figure 15) confirm the trend of the medium results - that 
the ordered vortex structure undergoes a transition at  the crank. A second structure 
begins to build up again outboard in a narrow band along the leading edge, but the 
entire region is dominated by the transformation of the coherent inboard vortex into 
small cellular structures, the result of the bursting at the crank. It seems plausible 
that the bursting and subsequent shredding into multiple filaments is the result of 
an instability mechanism. Snow (1978) has found that a three-dimensional disturb- 
ance can set off an instability in a vortical flow with a highly sheared azimuthal 
velocity component. This a t  least suggests the possibility of a mechanism to transfer 
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energy from large-scale to small-scale motion, the so-called energy cascade. In a 
somewhat related situation, Chorin (1982) has studied vortex dynamics and also 
observed that the vorticity tends to evolve into very non-uniform distributions. As 
vortices stretch their cross-sections decrease, and the energy associated with them 
would also increase unless they rearranged themselves in such a way that their 
velocity fields cancelled. The constraint of energy conservation prevents vorticity 
from spreading evenly, instead it forces the vortices to fold over on themselves 
developing into ‘tight knots ’ and hairpin shapes in order to bring about the velocity 
cancellation. 

One significant distinction arises from the comparison of the medium and fine 
contours. The vorticity has already broken down in the 70% plane of figure 15(b) 
compared to the double-cell pattern of the medium solution (figure 13). Also the 
chaotic vortical layer is thinner in the 90 % plane, and the total-pressure contours 
(figure 15c) reveal the wavy character of the layer. It recalls, in some sense, the 
flavour of scenario 3 in figure 6. 

9. Discussion 
We have simulated two cases of transonic leading-edge vortex flow and compared 

the results under mesh refinement. In  the case of the pure delta wing, the computa- 
tions reach a bona fide steady state and the sequence of refined-mesh solutions is 
converging. The vortex sheet, shed all along the sharp leading edge as a shear layer 
in the numerical solution, becomes less diffuse, and crisper as portrayed by the 
total-pressure contours. The roll-up into the core still appears diffuse with probably 
no more than one turn of the spiral being distinguishable. The total-pressure loss in 
the core, however, varies little between the medium- and fine-mesh solutions, 
supporting the explanation of Powell et al. (1985) that this depends on the shear at 
the leading edge and not on the artificial viscosity. The loss of total pressure in the 
core may be significant for the overall stability of the vortex. Past the trailing edge 
the flow must compress to the ambient pressure and turn in the direction of the 
free-stream. The flow in the core slows down and the pressure increases. If the shear, 
and therefore the total-pressure loss, is great enough‘, it can happen that the flow 
stagnates even before attaining free-stream pressure, in which case breakdown seems 
very likely. This is not the situation for the pure-delta flow presented here ; that flow 
is only slightly disturbed by the trailing edge and remains stable, but it may be 
significant for the cranked delta with 50 % loss. 

The other transonic problem considered, the cranked delta wing, produces results 
that are quite different. Only a quasi-steady solution is reached, and the sequence 
of refined solutions does not converge to a laminar flow. The most substantial 
differences between these two cases are the planform of the wing and its detailed 
geometry. The cranked delta has a round leading edge, but we observe separation 
in all three mesh solutions. This effect is usually ascribed to the action of artificial 
viscosity, but we do not see any appreciable shift in the location of the start of the 
vortex separation, as one might expect with a decrease in artificial viscosity implied 
in the finer mesh sizes. An alternative conjecture, then, is an inviscid mechanism for 
the creation of a vortex sheet. The Euler equations embody infinitesimal shear waves, 
and the question is whether a protruding edge can focus these waves by stretching, 
cause them to break nonlinearly, and form a vortex sheet (Rizzi 1987b). The 
occurrence of a sheet at  the edge would not violate Kelvin’s theorem. 

We believe that the lack of mesh convergence and the quasi-steadiness of the 
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FIGURE 17. Schematic description of the main flow features over the cranked-delta 
M, = 0.9, u = 8'. 

- 1 9 2 x 5 6 ~ 9 6  
96 x 28 x 48 Mesh 

I 64 x 20 x 32 
--- 
.......... 

0.9 

FIQURE 18. Comparison of coarse, medium, and fine results for surface C ,  in planes 
x / c ,  = 0.5, 0.7, and 0.9. 

solution is brought about by the crank in the leading edge. Unlike some earlier 
investigations of incompressible flow (Thompson 1985) where two distinct and stable 
vortices appear, our fine-mesh solution portrays the breakdown at the crank of the 
ordered inboard vortex into a thin but chaotic vortical layer embedded in the 
otherwise laminar flow over the wing. We suggest that this breakdown is due to a 
vortical instability. Figure 17 summarizes the main features of the computed flow 
field. The overall effect of the unstable vortical layer on the wing itself is not 
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particularly great. Figure 18 compares the coarse-, medium-, and fine-mesh spanwise 
distribution of surface C, in the 50 %, 70 % , and 90 % planes, and it shows oscillations 
in the fine result mainly about the laminar level of pressure, as given by the coarse 
mesh. It shows good agreement among all three results on the lower surface, and at  
least broadly comparable pressure levels on the upper surface. The details of the 
cellular structures are of course different, but the definite transition from the coarse 
to the medium to the fine results suggests the superposition of these structures upon 
the broad-scale motion of the coarse results. This comparison supports the suspicion 
that only a small amount of energy is being drained from the large-scale motion. The 
lift is not drastically reduced, from C, = 0.451 in the coarse results to 0.442 in the 
fine results. 

10. Final remarks 
Vortical flows are among the most baffling for the fluid dynamicist to understand. 

They can develop local regions of extreme velocity and vorticity, they are susceptible 
to instabilities, and their dynamics are inherently nonlinear. So they are prime 
subjects for numerical study, particularly when the flow is compressible and mixed 
with shock waves. Solving the Euler equations by taking differences upon a grid is 
the technique used. Here, in the spirit of trying to comprehend the results produced 
by such a method for leading-edge vortex flow, we have focused on two specific 
problems designed to highlight some of the outstanding uncertainties involved with 
this approach, like inviscid separation, loss in total pressure, the numerical capturing 
of vortex sheets, and the overall dynamics and stability of the vortical structures in 
the flow. The first problem is one of classical vortex flow around a pure delta wing, 
about which much already is understood. It sets the stage for the second case, vortex 
flow around a twisted delta wing for which less is known. The b&te mire of the 
mesh-based computational approach is the artificial diffusion of the flow features due 
to numerical dissipation. In  order to gauge this unwanted effect, we have carried out 
the solutions to both problems using a series of progressively refined meshes up to 
just over one million cells. In the solution to the pure-delta problem we observed that 
a shear layer was shed from the leading edge and rolled up to form a vortex, much 
as one would expect qualitatively in incompressible flow. The results converged under 
mesh refinement to a laminar and stable flow with a relatively thin shed shear layer 
but a relatively diffuse core in the fine-mesh solution. 

In the results to the second problem we observed separation from the round leading 
edge of a cranked delta wing at  transonic speed. The shed layer develops into a vortex 
that bursts and shreds at  the crank and evolves into a thin chaotic vortical layer 
superposed upon a laminar flow field. It seems likely that the cause of the breakdown 
is a Rayleigh-type instability. The computed results are only quasi-steady in time, 
and are not converging with mesh refinement as the first problem did. The structures 
within it become crisper, and the vortical layer itself becomes thinner as the mesh 
is refined. Whether further mesh refinement brings convergence or whether this trend 
continues so that even smaller scales appear and the layer grows even thinner are 
still matters of speculation. The central issue, and a controversial one, is whether, 
using a mesh-based approach, we can hope to simulate a flow containing vortical 
instability with some degree of validity. Our guess is that although the precise details 
computed within the unstable layer may be false, the method can predict the onset 
of the instability and the gross motion of the layer. 
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